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Introduction - Deep Reinforcemnet Learning in Continuous Action Space

I Goal: Training an agent to learn a improved policy in the continuous space
I Input:

I Current state form the environment
I Reward from the environment

I Output: The best action given constraints
I Case study in the game of simulated curling:

I Two dimensional continuous action space with two kinds of curl directions
I Execution uncertainty modeled by asymmetric Gaussian noise.

Motivation

I Deep neural networks for the discrete actions are not suitable for devising strategies
for games in which a very small change in an action can dramatically affect the
outcome.

I Challenges of learning in the discretized action

space

I Deterministic discretization has problems: (1) low resolution → strong bias in
policy evaluation and improvement (2) high resolution → slow searching and
learning speed and exponential growth in the number of actions to explore

I Learning in the discretized action space with Kernel Meth-

ods

I Conducts local search with continuous action samples generated from a deep
convolutional neural network (CNN).

I Generalizes the information between similar actions through kernel methods.

Monte Carlo Tree Search and Kernel Regression

I Monte Carlo Tree Search (MCTS) is a simulation-based search approach to
planning in finite-horizon sequential decision-making settings.

I Upper Confidence Bound applied to Trees (UCT) is a commonly used
MCTS algorithm using an Upper Confidence Bound (UCB) selection function.
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I Kernel Regression is a non-parametric method which uses a kernel function as a
weight for estimating the conditional expectation of a random variable.
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I The denominator of kernel regression is related to Kernel Density Estimation
which is method for estimating the probability density function of random variable.
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Kernel Regression Deep Learning UCT

I The policy-value network
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Algorithm 1 KR-DL-UCT

1: pθ ← the policy network
2: vθ ← the value network
3: st ← the current state
4: At ← a set of visited actions in st
5: expanded ← false
6: if st is terminal then
7: return Score(st), false
8: end if

9: at ← arg maxa∈At
E[v̄a|a] +C

√
log Σb∈AtW (b)

W (a) BSelection

10: if
√∑

a∈At
na < |At| then

11: st+1 ← TakeAction(st, at)
12: re ~ward , expanded ← KR-DL-UCT(st)
13: end if
14: if not expanded then
15: a′t ← arg minK (at,a)>γW (a) BExpansion
16: At ← At ∪ a′t
17: st+1 ← TakeAction(st, a

′
t)

18: At+1←∪ki=1 {a
(i)
init} s.t. a

(i)
init∼πa|st+1

// Policy net
19: re ~ward ← vθ(st+1|st, a′t) // Value net BSimulation
20: end if
21: ~vat ← 1

nat+1(nat~vat + re ~ward) BBackpropagation
22: nat ← nat + 1
23: return re ~ward , true

I Source codes will be available at https://github.com/leekwoon/KR-DL-UCT

Experimental Results

Datasets
I Supervised learning: 0.4 million of the play data from the champion program

(AyumuGAT’16) of Game AI Tournaments (GAT) digital curling championship in
2016.

I Self-play Reinforcement Learning: 5 million of the play data from self-play
matches of KR-DL-UCT, executing 400 simulations per move.

Quantitative Results
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# of data DL-UCT KR-DL-UCT
(million) (1) (2) (2)-(1)

0.0 50.0% 53.2% 3.2%
1.0 52.6% 60.0% 7.2%
2.0 51.9% 60.5% 8.5%
3.0 51.5% 62.2% 10.7%
4.0 54.0% 62.5% 8.5%
5.0 54.2% 66.0% 11.9%

I KR-DL-UCT (blue) outperforms (53.23%) DL-UCT (red) even without the
self-play RL.

I After gathering 5 million shots from self-play, KR-DL-UCT wins 66.05% which is
significantly higher than DL-UCT case.
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g Program Winning Percentage

GCCSGAT’17 74.0 ± 6.22%
AyumuGAT’16 66.5 ± 6.69%
AyumuGAT’17 62.3 ± 6.87%
JiritsukunGAT’16 86.3 ± 4.88%
JiritsukunGAT’17 55.5 ± 7.04%

I KR-DL : KR-DL-UCT with supervised learning

I KR-DRL : KR-DL with self-play RL

I KR-DRL-MES: KR-DRL with winning percentage table (multi-end strategy)

I Our program KR-DRL-MES won in the international digital curling
competition, GAT-2018.

Conclusion

I We provide a new framework which incorporates a neural network for learning strategy with a kernel
based Monte Carlo tree search in the continuous action space.

I The developed method is applied to the game of Simulated Curling and achieves the state-of-the-art
performance.
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