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» Goal: Training an agent to learn a improved policy in the continuous space » Monte Carlo Tree Search (MCTS) is a simulation-based search approach to Datasets

» Input: planning in finite-horizon sequential decision-making settings. » Supervised learning: 0.4 million of the play data from the champion program
» Current state form the environment — Selection » Expansion » Simulation > Backpropagation — (AyumuGAT'lG) of Game Al Tournaments (GAT) digital curling Championship In
» Reward from the environment 2016.

» Output: The best action given constraints
» Case study in the game of simulated curling;:

» Two dimensional continuous action space with two kinds of curl directions
» Execution uncertainty modeled by asymmetric Gaussian noise.

» Self-play Reinforcement Learning: 5 million of the play data from self-play
matches of KR-DL-UCT, executing 400 simulations per move.

Quantitative Results
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a Na » KR-DL-UCT (blue) outperforms (53.23%) DL-UCT (red) even without the
e — e » Kernel Regression is a non-parametric method which uses a kernel function as a self-play RL.
weight for estimating the conditional expectation of a random variable. » After gathering 5 million shots from self-play, KR-DL-UCT wins 66.05% which is
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R , T _ Algorithm 1 KR-DL-UCT » Our program KR-DRL-MES won in the international digital curling
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» Deterministic discretization has problems: (1) low resolution — strong bias in A

2 if s; is terminal then based Monte Carlo tree search in the continuous action space.

return Score(s;), false
end if

a; <— arg max,ca, E[v,|a] + C\/

volicy evaluation and improvement (2) high resolution — slow searching and | 256

earning speed and exponential growth in the number of actions to explore 2\ 32\' \ \
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» Learning in the discretized action space with Kernel Meth- ~ -
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» The developed method is applied to the game of Simulated Curling and achieves the state-of-the-art
performance.
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robot which can establish game strategies and perform games).
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28 Tnput (S) 21 va, nat+1(natvat + reward) >Backpropagation » Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, |., Huang, A., Guez, A., Hubert, T., Baker,
» Conducts local search with continuous action samples generated from a deep 22: Mgy = Mg, + 1 L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.,
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convolutional neural network (CNN).

> Generalizes the information between similar actions through kernel methods. . Source codes will be available at https: //github. com/1eekwoon/KR-DL-UCT » lto, T. and Kitasei, Y. Proposal and implementation of digital curling. In Proceedings of the IEEE

Conference on Computational Intelligence and Games, CIG, pp. 469-473, 2015.
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