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Motivation

How can we train robot policies efficiently

= without crafting the order of training skills and < curriculum reinforcement learning

= without manually engineering objective functions < unsupervised skill discovery

= to achieve complex skills for our learning agent?

Contributions

= Provide the unifying framework Variational Curriculum Reinforcement Learning (VCRL)
encapsulating most of the prior mutual information based approaches.

= Propose Value Uncertainty Variational Curriculum (VUVC), a value uncertainty based
approach to information-theoretic skill discovery.

Variational Curriculum Reinforcement Learning (VCRL)

= Recast variational empowerment as curriculum learning in goal-conditioned RL.
= Objective of variational empowerment is to maximize a variational lower bound:
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Value Uncertainty Variational Curriculum (VUVC)

= Approach for unsupervised discovery of skills which utilizes a value uncertainty for an
increment in the entropy of the visited state distribution.

Value Uncertainty Variational Curriculum
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where Z; o is the normalizing coefficient.

Definition: Expected Entropy Increment over Uniform Curriculum

Given the empirical distribution of the visited state

Vlslted _ Z H (3)

1=1

where I(+) is an indicator function, uniform curriculum goal distribution pzt/{ and value uncertainty-
based curriculum goal distribution pr are defined as follows:

i (g) = u<support<p¥181ted>><g>, (4)

P (9) = 7U<g>pt (9), (5)

where Z; is the normalizing coefficient, pt is uniform over the support of the leSlted and U(g) is
the value uncertainty. Then the expected entropy increment over uniform curriculum Iy is defined
as

d d
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Proposition: VUVC s At Least Better Than The Uniform Curriculum

With an accurate goal-conditioned policy and the model of dynamics, VUVC accelerates the increase
of entropy in the visited states compared to the uniform curriculum, if the uncertainty of the learned
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value functions U(g) and the log density of leSlted are negatively correlated.

Proof Sketch. We begin by deriving a next step empirical distribution of the visited state given
a curriculum goal g and a stationary state distribution induced by the policy p™(s|g), which can

.. visited s
be written as p}f{fed(s) s ij:p 9<S|g>. Plugging this back into above Definition, we analyze

asymptotic behavior of the expected entropy increment and obtain the conclusion.

Github: https.//github.com/seongun-kim/vcrl

Impact of Value Uncertainty
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Deploying Skills on the Real-world Robot
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