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» Fixed reward function are easy to get stuck in local optima which makes a wide range of
complex real-world scenarios unsolvable.
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» A navigation policy represented by a deep neural network often lacks transparency and 35mx39m 50mx 110 m

could not provide explanations on decision making reasons.

Contributions

» We propose a hierarchical reinforcement learning approach which learns diverse navigation
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» Experiments results show effectiveness and explainability of our approach on various .
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» QOur approach shows comparative performance to other baseline and can reduce the effort
Schematic of Hierarchical Framework of Navigation Skills to design hand-engineered reward functions.
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» We decompose a problem of learning navigation skills into a hierarchy of two sub-problems
as a goal-conditioned Markov Decision Process, and learn a family of low-level navigation
policies and a high-level policy which adaptively deploy the learned navigation skills.

Learning a Family of Navigation Skills

We simultaneously learn a family of low-level navigation policies that exhibit different
behaviors with a wide range of reward functions.
Reward Function

» The reward function is parameterized by the skill vector a"&" which is associated with a

corresponding reward function which comprises six distinct components: success, collision
avoidance, progress, driving, turning, and safety.

» Skill vector a"¢" induces a specific behavior by weighting a number of reward terms.
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» At the beginning of the episode, we sample a skill vector from predefined distribution and (d) S DI S e (C) ' e _,\- A
fix it during the rollout to train policy 7 g : 5™ — a’™, which we call a skill. — . R o A g

Learning to Deploy Skills

We learn a high-level policy to adaptively deploy the learned navigation skills.
Reward Function

» The goal is to minimize the time to reach the desired goal.

» We use the sparse reward function where the agent gets the reward of 0 when the goal is
achieved, and -1 otherwise.
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