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Background and Motivations

Background
▶ Existing methods focus on learning a single navigation policy with a fixed reward function

which are difficult to be deployed in a wide range of real-world scenarios.

Motivation
▶ Fixed reward function are easy to get stuck in local optima which makes a wide range of

complex real-world scenarios unsolvable.

▶ A navigation policy represented by a deep neural network often lacks transparency and
could not provide explanations on decision making reasons.

Contributions

▶ We propose a hierarchical reinforcement learning approach which learns diverse navigation
skills and deploys them.

▶ Experiments results show effectiveness and explainability of our approach on various
scenarios.

Schematic of Hierarchical Framework of Navigation Skills

▶ A high-level policy invokes low-level navigation skills from a raw sensory observation.

▶ A low-level policy is adopted from a continuous skill vector and drives a robot.

Problem Formulation

▶ We decompose a problem of learning navigation skills into a hierarchy of two sub-problems
as a goal-conditioned Markov Decision Process, and learn a family of low-level navigation
policies and a high-level policy which adaptively deploy the learned navigation skills.

Learning a Family of Navigation Skills

We simultaneously learn a family of low-level navigation policies that exhibit different
behaviors with a wide range of reward functions.
Reward Function
▶ The reward function is parameterized by the skill vector ahigh which is associated with a

corresponding reward function which comprises six distinct components: success, collision
avoidance, progress, driving, turning, and safety.

▶ Skill vector ahigh induces a specific behavior by weighting a number of reward terms.

R low
t (s lowt , alowt , ahight ) = rsuccess + ahigh[rcollision rprogress rv rw rsafety]

⊤.

Training procedure
▶ At the beginning of the episode, we sample a skill vector from predefined distribution and

fix it during the rollout to train policy πahight
: s lowt → alowt , which we call a skill.

Learning to Deploy Skills

We learn a high-level policy to adaptively deploy the learned navigation skills.
Reward Function
▶ The goal is to minimize the time to reach the desired goal.

▶ We use the sparse reward function where the agent gets the reward of 0 when the goal is
achieved, and -1 otherwise.

Rhigh
t (shight , ahight , alowt ) =

{
0 if reach the goal

−1 otherwise.

Training procedure
▶ During a rollout, the high-level policy predicts the skill vector which decides the behavior

characteristic.

▶ Skill vector is observed as an additional input to the low-level policy which outputs the
command velocity of a robot.

▶ We use the hindsight experience replay (HER) technique to handle the sparse reward
challenge.

Experimental Results

▶ Training environments.

Easy Difficult

Outdoor

Indoor

▶ Unseen evaluation environments.

▶ Our approach shows comparative performance to other baseline and can reduce the effort
to design hand-engineered reward functions.

▶ High-level policy adaptively deploys the most suitable navigation skills on unseen
environments.

▶ Our approach presents explainability by providing semantics of a behavior of an
autonomous agent.
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